Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells
نویسندگان
چکیده
Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.
منابع مشابه
Combined targeting of Raf and Mek synergistically inhibits tumorigenesis in triple negative breast cancer model systems
Aberrant Ras-MAPK signaling from receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), is a hallmark of triple negative breast cancer (TNBC); thus providing rationale for targeting the Ras-MAPK pathway. Components of this EGFR/HER2-Ras-Raf-Mek-Erk pathway were co-targeted in the MDA-MB-231 and MDA-MB-468 human TN...
متن کاملInterruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor-induced DNA damage in vitro and in vivo in human multiple myeloma cells.
The role of the Ras/MEK/ERK pathway was examined in relation to DNA damage in human multiple myeloma (MM) cells exposed to Chk1 inhibitors in vitro and in vivo. Exposure of various MM cells to marginally toxic concentrations of the Chk1 inhibitors UCN-01 or Chk1i modestly induced DNA damage, accompanied by Ras and ERK1/2 activation. Interruption of these events by pharmacologic (eg, the farnesy...
متن کاملDA-Raf-Mediated Suppression of the Ras—ERK Pathway Is Essential for TGF-β1-Induced Epithelial—Mesenchymal Transition in Alveolar Epithelial Type 2 Cells
Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofib...
متن کاملSustained activation of the raf-MEK-ERK pathway elicits cytokine unresponsiveness in T cells.
Activation of T cells via the TCR and other costimulatory receptors triggers a number of signaling cascades. Among them, the Ras-activated Raf-mitogen-activated protein/extracellular signal-related kinase (ERK) kinase (MEK)-ERK signaling cascade has been demonstrated to be crucial for both T cell development and activation. It has previously been demonstrated that high doses of Ag or anti-CD3 m...
متن کاملResistance to MEK inhibitors: should we co-target upstream?
Aberrant activation of the ERK pathway is common in human tumors. This pathway consists of a three-tiered kinase module [comprising the kinases RAF, mitogen-activated protein kinase (MAPK) kinase (MEK), and extracellular signal-regulated kinase (ERK)] that functions as a negative feedback amplifier to confer robustness and stabilization of pathway output. Because this pathway is frequently dysr...
متن کامل